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ABSTRACT 
In this paper we investigate the value of shared information between chain actors for improving daily operations in 
high-density logistics processes at distribution warehouses. We first define a generic high-density logistics process at a 
distribution warehouse based on real-world cases. Utilizing daily shared information about inbound flow (i.e. truck-
arrival time) and outbound flow (i.e. required timeframes), we then propose daily process redesign on changing process 
parameters and evaluate their impact on the process performance using a discrete-event simulation model of a 
floricultural supply chain. Additionally, the impact of different information characteristics (i.e. timeliness, accuracy and 
completeness) on the effectiveness of the redesign decision are studied through different scenarios. This work 
contributes to a better understanding of the value of information in supporting decision-making at the operational 
level, particularly in warehouse operations. It also helps to raise the awareness of industrial managers regarding the use 
of information for improving process performance as well as the importance of information characteristics. 

  
Keywords: value of information, information characteristics, distribution, warehouse operations, information 
sharing, discrete-event simulation 
 

1. Introduction 
Warehouses are a critical component of any supply chain where different products ordered from various suppliers are 
consolidated for combined delivery to retailers (Gu et al., 2007). In order to meet the increasingly diverse and dynamic 
demand of end customers nowadays, retailers are ordering many types of products in smaller quantities with even 
smaller required lead-time, see for examples about floricultural supply chains reported by De Keizer et al. (2015). This 
development leads to highly dense logistics context in which small quantities of a wide assortment of products have to 
be distributed more frequently and in shorter timeframes. The logistic processes could be even more challenging for 
agro-food products that operate under time constraint and the need for conditioning because of products’ perishabil ity 
(van der Vorst et al., 2005). In this paper, we focus on the daily operations in distribution warehouses of agro-food 
supply chains where products from inbound trucks are unloaded, subjected to value-added processes (e.g. labeling, 
quality checking), and shipped to outbound trucks within a short timeframe of less than twelve hours.    

Information about inbound and outbound flows plays an important role in facilitating efficient and fast processes in 
such distribution warehouses (Apte & Viswanathan, 2000). Besides detailed information about products on item level 
based on tracking technologies such as RFID and bar codes (Connolly, 2008), shared information from suppliers and/or 
retailers can be valuable in improving the process performance. For example, the suppliers can share the truck-arrival 
time information and the retailers can provide the required outbound time window. The work presented in this paper 
particularly investigates the value of truck-arrival time information shared by suppliers in enhancing the decision-
making at the distribution warehouse. 

Chopra & Meindl (2013) suggest that information should be of the right kind, accurate and accessible in a timely 
manner to be valuable in decision-making. In the rich literature on information sharing, information is often assumed to 
meet the requirement of information characteristics desired by its user. As a result, the impact of information 
characteristics on the value of information has not been studied extensively. In reality, many factors (i.e. human and 
environment) can intentionally or accidentally distort the information characteristics. This paper contributes to the 
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literature by analyzing the value of truck-arrival time information in different scenarios considering different 
information characteristics, i.e. information timeliness, accuracy and completeness. Thus the objective of this paper is 
twofold: (1) to demonstrate the use of available information in improving daily operations at distribution warehouses 
and (2) to stress on the importance of information characteristics. 

The remainder of this paper is organized as follows. Section 2 reviews the literature and elaborates the generic 
theoretical framework to assess the value of information in supply chain process redesign. Section 3 introduces the 
high-density logistic context at distribution warehouses and the case study of a floricultural supply chain. The 
simulation framework and the results of the case study are presented in section 4. In the last section, we summarize 
the work in progress and discuss the next steps.  

2. Literature review and theoretical  framework 

2.1 Literature review 
Value of information (VOI) is a core and growing topic in supply chain management research (Shiau et al., 2015). In 
most of the literature, value of a piece of information is defined as the advantage/cost-saving/benefit achieved through 
the use of the information in decision-making relative to the base scenario when the information does not exist, see for 
examples Ketzenberg et al. (2006), Choudhury et al. (2008), Davis et al. (2011), and Ganesh et al. (2014). 

The largest part of the current literature on VOI is about the value of information sharing in decisions on inventory 

management. For this type of decision, main interests are in the values of inventory-related types of information 

including demand, inventory level, order planning and manufacturing process. The general conclusion from these 

studies is that the VOI can be significant yet very sensitive to supply chain process parameters (Li et al., 2005; Schmidt, 

2009). Ketzenberg et al. (2007) investigated 27 papers and introduced a useful framework that helps to explain how 

supply chain process parameters affect the value of information sharing in inventory replenishment decision. Five 

dimensions in that framework are (i) the level of uncertainty in the supply chain, (ii) the sensitivity of the supply chain 

to uncertainty, (iii)  the responsiveness of the supply chain, (iv) the available information in the supply chain and (v) the 

uses of information in the supply chain decision-making. 

The second largest logistic area of the VOI literature concerns transportation decisions. Advanced load information 
from shippers in collaborative transporation enables carriers to better plan their pickup/delivery schedule and routing 
(Tjokroamidjojo et al., 2006; Zolfagharinia & Haughton, 2014). The value of product location information enabled by 
tracking and tracing technologies are studied by Yi (2014), Kim et al. (2008) and Flamini et al. (2011). 

Literature on VOI in operational warehousing decisions is very limited. The work by Larbi et al. (2011) is the closest 
to our objective. In the study, the information about the order of arrivals and the content of inbound trucks is used in 
the operational truck-scheduling decision at a cross-docking warehouse. The study does not cover the internal 
operations inside the cross-docking warehouse. 

A majority of the literature investigate the VOI on the availability perspective of information. In other words, these 
studies consider and compare two scenarios: the decision-making in the supply chain with- and without the information 
scenarios. However, in practice not only the information availability but also other information characteristics such as 
timeliness, accuracy, completeness, consistency, format, security, etc. may influence the VOI. Information 
characteristics are also addressed under different terms such as information quality dimension (Miller, 1996; 
Gustavsson & Wänström, 2009), or information value attributes (Sellitto et al., 2007; Herrala et al., 2009; Leviäkangas, 
2011). We consider the terms to be interchangeable on the perspective of how they affect the VOI. In the theoretical 
framework on evaluating the value of information in supply chain process redesign decision-making, we especially 
emphasize the three intrinsic characteristics of information (table 1), which are objective and native to the information 
(Hazen et al., 2014). We argue that other characteristics are subjective and contextual, which can be controlled once 
the user understands the value of information. 

Table 1. Information accuracy, timeliness and completeness 

Characteristic Definition 

Accuracy How accurate the information reflects the underlying reality?  

Timeliness Timeliness indicates how up to date the information is and how well it meets the 

demand for information in a particular time and space.  

Completeness Completeness refers to different levels of detail of the information.  
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2.2 Theoretical framework 
Grounding on the literature, we propose a generic research framework (figure 1) to study the value of a piece of 

relevant information in improving the redesign decision-making on a supply chain process. This framework will be 

applied to the case study in section 3. The redesign here refers to the changes in the processes, which can be at the 

strategic, tactical or operational level. At the strategic level it can be, for example, a new design for a whole distribution 

network. At the tactical/operational level it can be, for instance, a new ordering rule or a new order quantity in the 

inventory management process.  

In the theoretical framework, there are three decision-making scenarios. These 3 scenarios start with dissimilar 

inputs for the decision support tool. 

 Scenario 1: the input is the base information, which is the existing information in the process. 

 Scenario 2: the input includes the base information and the perfect additional information acquired by the 

decision maker. The additional information is perfect when it meets the requirement of information 

characteristics desired by its user. Taking information accuracy as the desired information characteristic of the 

user, accurate information will be considered as perfect information. 

 Scenario 3: the input includes the base information and the imperfect additional information. The additional 

information is imperfect when one of its characteristic deviates from the requirement by its user, e.g. 

inaccurate information or untimely information. 

Accordingly, three different decisions are obtained from the decision support tool. The base decision is evaluated in 

the current situation whereas process-redesign decisions are evaluated in multiple scenarios on process parameters. 

Simulation might be preferred to other methods such as optimization in this evaluation step because of its capability to 

address the high complexity and dynamics of supply chain processes. 

The value of information and the impact of information characteristics are measured by the improvement in the 

process’s Key Performance Indicators (ΔKPIs). The ΔKPIs between decision-making scenarios 1 and 2 results in the value 

of perfect information, while the ΔKPIs between scenarios 2 and 3 indicates the impact of information characteristics 

on the value of information. 

 

 

Figure 1. Framework on evaluating the value of information in supply chain process redesign decision-making 

3. High-density logistics and the case study  
In this section, we provide a generic definition for high-density logistics process at distribution warehouses. Afterwards, 
we discuss a case of a floricultural supply chain and appropriately map the concepts in the theoretical framework to the 
case. 
 
High-density logistics. The term “high-density logistics” have been used in the literature without being formally 
defined, see for example in Lee & Whang (2001, p. 59). Considering two important aspects in a logistics process, i.e. the 
timeframe and the number of logistics flows, we define high-density logistics process as a logistics process that consists 
of a high number of logistics flows which are required to be accomplished in a short timeframe. Below, we give an 
example of a high-density logistics process in a cross-docking distribution warehouse. 

The distribution warehouse in this example is a mixed warehouse, as presented in the study by Apte & Viswanathan 
(2000) (appendix A) where inbound shipments from several suppliers are splitted and then consolidated again to create 
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multiple multi-product shipments. The internal logistic process at such a distribution warehouse is illustrated in figure 
2. The process consists of three primary stages: Splitting, Merging & Aggregating and Shipping. The size of Stock 
Keeping Units (SKUs) changes in each stage:  

 From the moment the trucks arrive until the entry of stage S1 – Splitting, products are in big SKUs. 

 At stage S1, the big SKUs can be directly brought to stage S2 or can be splitted into many small SKUs, which 
go to different lines of stage S2 – Merging & Aggregating.  

 At stage S2, many small SKUs are merged into full big SKUs and multiple big SKUs are aggregated before 
being shipped at stage S3 - Shipping. Note that there is a limitation for the aggregating size.  

Because the retailers frequently order small quantities of many products, the number of big SKUs split at stage S1 
increases, and so does the average number of small SKUs that a big SKU is split into. This means there are increasing 
number of logistics flows (i.e. the number of operations and the movements of products between S1 and S2). 
Moreover, the timeframe is short because of the small required lead-time of the order.  

 

S0. Unloading, 
quality checking, 

etc.

S1: 
Splitting

S2.A: Merging 
and Aggregating

S2.B

S2.C

S3: 
Shipping

S3

S3

S1

 Destination A

Destination B

Destination C

 

Figure 2. Multi-stage distribution process 

Case study. The distribution warehouse in this case study is part of a Dutch floricultural supply chain. The flower buyers 

are located in the neighborhood of the warehouse. We focus on the cut-flower area of the distribution warehouse.  

Subsequent to the order transaction between flower growers and buyers, online electronic forms are sent from 

growers to the warehouse indicating the content and the destinations of each flower trolley. The trucks transporting 

the flowers arrive at the warehouse after a lead-time ranging from a few hours to one day according to the nature of 

the order (i.e. infrequent urgent or regular orders). In this case, we only consider the regular orders, which means the 

online information arrives one day in advance to the arrival of flowers. The warehouse is responsible for distributing 

the flowers to the right buyers in the right time, right product, and right quantity. 

The distribution process follows the multi-stage distribution process presented in figure 2. It starts with unloading 

trolleys from trucks, and then sorting and quality-checking. Next, the trolleys are moved to a queue buffer where they 

are either carried directly to the Merging and Aggregating line of a client, or split over a number of buyers. A flower 

trolley often consists of 30 buckets of cut-flower. On average 60% of inbound trolleys are split among the buyers. At 

Merging and Aggregating line, flower buckets are merged in full trolleys again. Many full trolleys are aggregated and 

physically connected before they are shipped to the buyers.  

 

Mapping. The mapping of the theoretical framework to the case is as follows. 

 Base information: the daily quantity of trolleys delivered to each buyer 

 Additional information: the truck-arrival time information provided by the growers 

 KPI: the KPI is defined as the number of trolleys that are distributed in time to the buyers before their specified 

time T. 

 The decision to be made: In this case study, we aim to demonstrate the possible use of the additional information 

on daily decision-making. The decision from this decision-making should be practical so that the implementation of 

the decision does not require considerable effort by the workers in the process. We intend to use the information 

to improve the daily decision on a process parameter, i.e. the aggregating sizes before the trolleys are shipped to 

the buyers. The aggregating sizes directly affect the KPI. Intuitively, knowing the truck-arrival time enables an 

estimation on the throughput time before the trolleys are ready at the aggregating stage. As a result, the decision 

maker can choose the aggregating sizes that maximizes the KPI.  

 Decision support tool for process-redesign decision: A heuristic (figure 3) is developed to make decision on the 

aggregating sizes in case truck-arrival time information is available. The heuristic loops backward every c time units 



Nguyen et al. / Proceedings in System Dynamics and Innovation in Food Networks 2017, 289-299 

293 
DOI: http://dx.doi.org/10.18461/pfsd.2017.1730 

from the specified time T; c is very small compared to T. The additional information allows the calculating of the 

arrived quantity Q of trolleys at any (T – kc) timing. We use an algorithm (appendix B) to estimate the processing 

time to deliver the Q trolleys to the buyers. If it is possible to do so, the heuristic will select the aggregating sizes 

that maximizes the KPI. 

Feasible to deliver 
Q before time T?

YES

NO

Calculate the arrived 
quantity Q by time (T – kc)

Select the aggregating sizes 
with the highest KPIs

Increase k 
by 1

Required time T,
c << T, k = 0

Output the decision 
on aggregating sizes

 

Figure 3. Heuristics with information 

 Decision support tool for base decision: It is crucial to obtain a proper base decision that can serve as a benchmark 

for calculating the VOI. With only the base information, i.e. the total inbound quantity of each buyer, the base 

decision can only minimize the processing time of the entire inbound trolleys using the same algorithm in appendix 

B. Note that the base decision and the process-redesign decision are different upon their objectives. While the 

base decision aims to minimize the processing time, the process-redesign decision aims directly to maximize the 

KPI.  

 Information characteristics: 

 Information accuracy: is the provided truck-arrival time accurate? In reality, delays may occur because of 

unexpected traffic conditions.  

 Information completeness: is the provided time specified in hours, or quarters or minutes? 

 Information timeliness: what if a number of growers do not provide the information in time before the 

moment of decision-making? 

 Process parameters 

 The inter-arrival time of trucks  

 The specified time T by the buyers 

 The cycle time at stage S3 

 Evaluating the decisions: Discrete-event simulation is widely used for modelling supply chain distribution and 

transport planning  (Tako & Robinson, 2012). It should be noticed that the heuristic can only accept deterministic 

inputs in its calculation. To evaluate the decisions, we use a discrete-event simulation model in which the process 

parameters are stochastic. As a result, the dynamic characteristics of the process is reflected in the simulation 

results.  

4. Simulation framework and results  
The simulation model is implemented using Enterprise Dynamics 9 package (EnterpriseDynamics, 2017). In reality, there 

are multiple buffers for different group of destination. We choose to model one buffer area and limit the number of 

buyers to 3. There are two employees working at the Splitting and Merge and Aggregating stages, and one employee at 

stage Shipping. Their shifts are finished as soon as all the trolleys are delivered to the clients.  

The steps in the simulation framework is as follows. 
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 Step 1: randomize truck-arrival time (Poisson distribution) and product quantity for each buyer  

 Step 2: run the algorithm in appendix B to obtain the aggregating sizes in base information 

 Step 3: run the heuristic to obtain the aggregating sizes in  process-redesign decision  

 Step 4: run the simulation model to obtain the KPIs for base decision and process-redesign decision. 100 runs 

were performed on each input dataset in order to obtain a narrow 95% confidence interval. By this way, the 

means can be used for comparison in step 5. 

 Step 5: compare the KPIs to obtain the VOI  

Note that in order to assess the value of perfect information, we input the same truck-arrival time data in both the 

heuristic and the simulation model. In case of imperfect information, we use the two different inputs: the original truck-

arrival time data for the simulation model and the distorted truck-arrival time data for the heuristic. 

4.1 Value of perfect  informati on 

The theoretical highest VOI can be achieved if one has enough time and computational capacity to test all the 

combinations of aggregating sizes with the simulation model. Hereby we present the practical value of perfect 

information using the heuristic-based process-redesign decision. As discussed in the literature review, VOI is sensitive 

to the process parameters. As a result, it is meaningless to provide a numerical value as the VOI. In this sub-section, we 

investigate the general significance of the VOI and the effect of the process parameters. 

Table 2 presents the setting of process parameters. The parameters of the current situation are in bold. In order to 

examine the sensitivity of VOI to a process parameter, we alter its value while fixing the values of the other parameters 

at the current situation. The results are shown in figure 4.  

The results indicate that (1) the VOI is positive in a majority of input datasets and parametric settings. Nonetheless, 

there are cases in which the VOI is close to zero, which implies that the process-redesign decision is just as good as the 

base decision. (2) The process parameters significantly influence the VOI, yet the impact is non-monotonic. For 

instance, we expected that the longer the outbound required time would be, the higher number of trolleys could be 

processed, thus the higher VOI could be. The results show that it is true until a threshold (in this case, T = 4 hours). 

Beyond this threshold, the quality difference between the base decision and process-redesign decision becomes small 

because the outbound required time is close to the processing time of the entire inbound trolleys. 

Table 2. Process parameters setting 

Parameter     Values 

Inter-arrival time of trucks 5, 8, 12, 15 (minutes) 

Specified time T by the buyers 2, 3, 4, 5 (hours) 

Cycle time at stage S3     10, 15, 20, 25, 30, 35 (minutes) 

 

 

 

Figure 4. The sensitivity of VOI to process parameters 

4.2 Value of imperfect information  
While implementing the scenarios on information characteristics, we realized that the impact of information 

characteristics depends on to what extent the heuristic relies on the information characteristics. In the case study, since 
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the heuristic utilizes the information to calculate the arrived quantity of trolleys before a predefined time, i.e. (T – kc), 

the requirement is that whether or not the trucks arrive before that time. Therefore we only considered the 

information timeliness at this moment.  

We carried out different scenarios to study the impact of untimely information. From the input data of the current 

situation, we randomly omit the arrival-time of one truck, two trucks, three trucks and five trucks. Accordingly, the 

arrived quantity of these trucks are not counted in the heuristic. Interestingly, with the 3-truck omitted dataset, the 

output from the heuristic remains the same with the case of perfect information. 

The results (figure 5) show that information untimeliness does not necessarily reduces the VOI. In the case of set 2 

of two-truck omitted, the decision even outperforms the decision from the perfect additional information. Note that 

theoretically the value of imperfect information cannot surpass the value of perfect information. This leads to the 

confirmations that the quality of the heuristic determines the VOI, and the proposed heuristic needs improvement in 

order to exhaustively exploit the information. Nevertheless, we expect that a more complicated heuristic might impose 

extra requirements on information characteristics, which in turn amplifies the impact of information characteristics on 

the VOI.  

 
Figure 5. The impact of untimely information 

5. Summary and next research steps 
In this paper, we demonstrated a practical approach to use shared information from the suppliers for improving the 
decision-making on daily operations at distribution warehouses. A generic research framework on evaluating the value 
of information in supply chain process redesign was applied to the distribution process of a floricultural supply chain. 
The value of truck-arrival time information was studied. The results on the VOI from the case study show that the VOI is 
positive, yet numerically sensitive to supply chain process parameters. The importance of information characteristics is 
subject to how the information is used in the decision support tool (i.e. the heuristic). 

The plan for next research steps is as follows. 

 Integrating the second KPI, i.e. the total processing time of the entire inbound flow. 

 Extending the constraint to multiple outbound required times in a day. 

 Given the limitation of the current heuristic, we plan to extensively explore the literature on queueing theory 
and warehousing in order to improve the quality of the heuristic. 

 Developing more complicated scenarios on information characteristics (including also information accuracy and 
completeness) to reflect the dynamic reality. 
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Appendix A 
Mixed warehouse structure (Apte & Viswanathan, 2000, p. 295) 

 

Figure 6. Mixed warehouse structure 

Appendix B 
This appendix presents the algorithm which estimates the throughput time from the first stage S1-Splitting through 
stage S2-Merging and Aggregating to the final stage S3-Shipping.  

Considering each aggregated set of trolley as a product and the only worker at stage S3 as a server, the generic 
queueing model represents the distribution process following Kendall notation is D/D/1/∞/∞. However, there are as 
many types of products as many buyer lines. Each type of product has a different inter-arrival time because of different 
aggregating sizes at each buyer lines.   

 Let α be the average time that a full trolley appears at the aggregating lines. In the case study, α is based on 
the splitting time and merging time. α varies according to input datasets on quantities allocated to buyers. We 
assumed that in practice the process manager is able to estimate the numerical value of α and re-estimate this 
value regularly. The value of α used in the heuristic is obtained from the simulation model. We selected the 
maximum mean of α. The VOI is slightly sensitive to the accuracy degree of estimating the value of α (figure 7).     

 Let N is the number of buyer lines in the distribution process. 
 With i = 1,2, …, N: 

o Let xi are the aggregating sizes at the buyer line I, then Ti = αxi will be the inter-arrival time of product 
from line i 

o Let ki is the inbound quantity of product at line i; K = ∑   
 
     

o Let βi is the service time for product at line i.  

The problem is formulated as “given Ti, ki, βi, calculate the processing time of the entire inbound K products”. The 
pseudo-code of the algorithm is as follows. 
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Figure 7. Sensitivity of VOI to estimated α 

Initialization 
t = 0 
 

 FOR i = 1 to N: 

  Li = { tuples (kTi , βi) with   = 1, 2, …,  i }   
 ENDFOR 
 

 L = {   
 

Li }  

 
 L = sorted L in the ascending order of the first items in the tuples 
 
FOR i = 1 to K: 
 Add the second item of the tuple i to t 
ENDFOR 
 
Return t 

 


