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Abstract 
 
We investigated German hog-price dynamics with an innovative ‘diagnostic’ modeling approach.  Hog-price cycles 

are conventionally modeled stochastically—most recently as randomly-shifting sinusoidal oscillations.  

Alternatively, we applied nonlinear time series analysis to empirically reconstruct a deterministic, low-dimensional, 

and nonlinear attractor from observed hog prices.  We next formulated a structural (explanatory) model of the 

pork industry to synthesize the empirical hog-price attractor.  Model simulations demonstrate that low price-

elasticity of demand contributes to aperiodic price cycling – a well know result – and further reveal two other 

important driving factors:  investment irreversibility (caused by high specificity of technology), and liquidity-driven 

investment behavior of German farmers. 
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1. Introduction 

Past work investigating the persistent hog-price cycle has resulted in substantial disagreement over underlying 

causes.  Early work attributed the phenomenon to naïve producer behavior characterized by linear-cobweb price 

adjustments [1-5].  More recent studies proposed that persistent fluctuations are driven by nonlinear chaotic price 

dynamics.  Statistical tests by Chavas and Holt (1991) [6] (using quarterly US data) and Holzer and Precht (1993) [7] 

(using weekly German data) failed to reject the hypothesis of nonlinear price dynamics.  Streips (1995) [8] verified 

the results in Chavas and Holt (1991) [6] for monthly data, and further reconstructed a chaotic attractor composed 

of non-repeating aperiodic price cycles. Holt and Craig (2006) [9] employed regime switching models to provide 

evidence of nonlinearity, regime dependent behavior, and structural change over an almost 100-year study period. 

A recent contribution by Parker and Shonkwiler (2013) [10] returned to a linear representation of hog-cycle 

dynamics. They modeled the hog cycle in Germany as a randomly-shifting sinusoidal oscillation with time varying 

amplitudes.  They hypothesized that producer inability to predict future prices due to stochastic influences is 

responsible for persistent cycling.   

We employ an innovative ‘diagnostic’ modeling approach to determine causal factors driving the German hog-

price cycle. We apply nonlinear time series analysis to diagnose the presence of deterministic nonlinear dynamics 

in observed hog-price data. The presence of nonlinear dynamics provides evidence that the hog-price cycle is 

endogenous to the hog industry itself [11], and not driven principally by random supply/demand shocks [12] or a 

randomly perturbed sinusoidal cycle [10].  It also provides information that can be used, along with knowledge of 

the structure and technology of the pork industry, to formulate a structural (explanatory) model capable of 

simulating, and identifying causal factors driving, empirically-diagnosed hog-price dynamics.  

2. Characteristics of the hog cycle in Germany 

The graph of the German hog-price cycle is shown in Fig. 1.  It is based on average producer prices for 

slaughtered pigs of quality E to P, in € per kg carcass weight, for the state of North Rhine-Westphalia, Germany.1

                                                            
1 The data were officially recorded and provided by the “Landesamt für Natur, Umwelt und Verbraucherschutz 
NRW”. 

 

The record comprises the period from January 1990 to December 2011 for a total of 1144 observations.  Hog prices 
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exhibit the well-known cycles superimposed by irregular disturbances. Furthermore, the average price level 

decreases during the first decade and increases slightly thereafter. This pattern is mainly caused by the change of 

the Common Agricultural Policy (CAP) of the European Union, starting with the McSharry reform in 1992. The CAP 

reform liberalized commodity markets by reducing the price support (i.e. intervention prices).  This led to a strong 

decrease of grain prices during the nineties and the early years of the new century. Consequently, hog prices 

followed declining feed prices leaving the farmers’ margins largely unchanged. The increase in average hog price in 

the latter part of the record is observed for most agricultural commodities.   

Figure 1 

In the studies of the USA, the hog cycle is normally represented by the hog to corn price ratio. This implies 

that the decision makers value the slaughter pigs in quantities of corn. This might have been a valid assumption in 

the past, but it is highly questionable for the present circumstances, at least under European conditions. With 

today’s commonly used technology, significantly more than half of the total cost are fixed cost associated with the 

provision of the durable assets. For the past two decades, we found hardly any hog-to-feed price ratio for which 

the preferable choice would have been to leave capacities idle. Thus, short term production decisions are primarily 

driven by past investments, and are largely independent from current feed prices. Furthermore, farmers as well as 

feed suppliers can choose between different components. Consequently, the volatility of feeding cost will always 

be less than the volatility of a single feedstuff. Finally, changes of feedstuff prices will be encoded in the hog prices 

as far as there is a causality. Our empirical results to follow provide evidence for such causality.   

For these reasons, we contend that representing the hog cycle by a hog-to-feed price ratio biases the analysis 

by mixing two phenomena with totally different origins: the hog price cycle on one hand and the volatility of barley 

prices on the other.2

                                                            
2 For example, Parker and Shonkwiler (2013) conclude that – contrary to the USA – the hog cycle in Germany is 
becoming more volatile. This however contradicts the pattern of slaughter pig prices that exhibits a slightly 
decreasing volatility in the most recent years (Figure 1). 

  Increased barley price volatility is a recent phenomenon due to CAP reforms, whereas the 

hog cycle has existed for a long time caused by factors requiring further analysis. We focus our analysis on 

slaughter hog prices. Given nonlinear dynamic industry structure, slaughter-hog-price dynamics encode patterns of 

feedstuff prices. 
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3. Diagnostic modeling approach 

The diagnostic modeling approach we propose is depicted in Fig. 2.  The leftward column analyzes the empiri-

cal time sires data, and the rightward column utilizes these findings—along with knowledge about the industry 

structure and important characteristics of the technology—to develop a structural model as an explanatory tool. 

Nonlinear time series analysis (NLTS) is used to diagnose system dynamics from a single observed time series 

(leftward column).  NLTS works best when the time series is filtered of noise characteristic of economic time series 

data.  Some noise may be due to observation or measurement errors most effectively treated as white noise that 

can be eliminated with linear filters.  However, substantial variability in observed data—commonly attributed to 

random noise—may instead be due to complex deterministic dynamics resulting from nonlinear feedback 

interactions among system components. NLTS tests for the presence of low-dimensional nonlinear system 

dynamics in observed data.  If observed data test positive for these dynamics, modelers have reason to expect that 

low-dimension mechanistic dynamic models may be capable of explaining highly-variable and apparently-random 

empirical behavior.   

NLTS results can be used—along with knowledge about the hog industry—to design a model capable of 

simulating structural dynamics reconstructed from observed data (rightward column) [13].   This provides a 

valuable empirical test of model design.  Moreover, the model can be used to explore factors that may be 

responsible for empirically-diagnosed dynamics. 

Figure 2 

4. Nonlinear time series analysis (NLTS) 

The German hog-price record observed in Fig. 1 is characterized by non-repeating oscillations with different 

periods (i.e., ‘aperiodic’ cycles).  Deterministic nonlinear dynamic systems can generate these (potentially chaotic) 

cycles endogenously. Chaotic dynamics are characterized by ‘sensitivity to initial conditions’ in which close 

neighboring trajectories at a given point in time exponentially diverge as time evolves—accurate long-term 

predictions of chaotic systems are unachievable.  Despite exponential divergence, chaotic trajectories converge 

toward a bounded, spatially-organized, and low-dimensional geometric structure (‘strange attractor’) upon which 
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they orbit irregularly [14-16].  We apply NLTS to search for the presence of a strange attractor in the observed 

German hog-price record.   

The NLTS literature clearly teaches that an attractor can be empirically reconstructed from small and noisy 

data sets, but “one gives up the ambition of reconstructing the very fine structure of the attractor including 

complex folding and fractal patterns…” ([17], p. 268).  One is limited to reconstructing the ‘skeleton’ of a real-world 

attractor [18]. Consequently, we restrict our objective to detecting and reconstructing the ‘skeleton’ of a strange 

attractor that can guide model design. 3

4.1  Signal processing 

   We do not attempt to empirically prove the existence of chaotic market 

dynamics with limited data.  

Singular Spectrum Analysis (SSA) is a data-adaptive signal processing approach that can accommodate 

highly anharmonic oscillations—that is, periodic oscillations that are not usually sinusoidal [17-20].  SSA separates 

signal (S) from noise (N) in observed data without losing dynamic structure.  We apply it to reconstruct the German 

hog-price record as the sum of trend and oscillation components (S) and an unstructured-residual (N) component.  

The first task in S/N separation is to identify dominant peak frequencies of hog-price cycles in the record.  

Fourier Spectrum Analysis identifies dominant peak frequencies at 0.004 Hz (a 260-week or 5-year oscillation 

period) and 0.019 Hz (a 52-week or annual oscillation period) (Fig. 3a).  Continuous Wavelet Analysis verifies 

stationary power at the low frequency 5-year oscillation as required by subsequent analysis (Fig. 3b).4

Figure 3 

   

 

SSA commenced by embedding the hog-price record, P(t), into a ‘trajectory matrix’, X, whose columns are 

1K N L= − + single-period lagged vectors of P(t), N is record length, and L is ‘window length’ restricted by 

2 / 2L N≤ ≤  and conventionally selected proportional to the dominant spectral peak in the Fourier spectrum 

[21].  Accordingly, the window length was set at L = 520, which allows for 10 repetitions of the annual (52 month) 

                                                            
3 NLTS may fail to reconstruct a real-world attractor for several reasons including: 1) System dynamics are not 
governed by a low-dimensional attractor; 2) Noisy or limited data prevent an existing attractor from being detected; 
or 3) Observed data do not lie on an attractor (Williams, 1997). 
 
4 AutoSignal 1.7 (© SeaSolve Software Inc., 1999-2003) was used for Fourier spectral analysis and Continuous 
Wavelet Analysis. 
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oscillation period.  A singular value decomposition decomposes trajectory matrix X into the sum of ‘empirical 

orthogonal functions’ (EOF),
1

r
ii

X EOF
=

=∑ , where T
i i i iEOF EV PCλ= , r = rank X, and eigenvalues iλ , 

eigenvectors ( )iEV , and principal components ( )iPC  are drawn from the eigensystem of the covariance matrix, 

TXX .  Next, the EOFs were arranged in rank order according to magnitude of their respective singular values, 

( )iλ , and then grouped to form the basis for trend, oscillatory, and unstructured-noise components.  The initial 

EOF typically forms the basis for the trend component.  Subsequent consecutive EOF pairs—whose eigenvectors 

oscillate with identical frequency in phase quadrature—are grouped to form the basis of oscillations.  The 

eigenvectors associated with EOF pairs 2,3 and 6,7 exhibit the 5-year and annual oscillations detected by the 

Fourier spectrum, respectively (Fig. 4a,b).  Finally, ‘diagonal averaging’ of grouped EOF matrices converts them to 

vector time series’ of corresponding trend, oscillatory, and unstructured-residual components [20].  The isolated 

trend component and the composite SSA-reconstruction filtered of the unstructured-residual component are 

graphed against the observed hog-price record in Fig. 4c.  Compelling evidence for the strength of the signal in the 

SSA-reconstruction is that it accounts for 99% of the variation in the observed hog-price record.5

Figure 4 

   

4.2 Phase Space Reconstruction 

We applied Phase Space Reconstruction [14, 15, 22] to detect whether long-term system dynamics 

governing German hog-price dynamics evolve along a low-dimensional nonlinear attractor. Given nonlinear 

dynamic structure, reconstructing real-world system dynamics from the single SSA-filtered hog-price record is 

possible because interactions among system variables are embedded in the record of each variable [23, 24].  

Everything depends on everything else, or as explained by the naturalist John Muir (1911), “[w]hen we try to pick 

something up by itself, we find it hitched to everything else in the universe.” [25] 

The 'time-delay' embedding method of phase space reconstruction [22] represents the 

multidimensionality of the real-world dynamic systems governing hog-price dynamics by segmenting the de-

                                                            
5 Eigenvalues measure the partial variance explained by their respective EOFs.  The sum of all eigenvalues 
measures the total variance in the record (Ghil et al., 2002). 
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trended6 ( )fP t and filtered hog-price record, , into a sequence of delay coordinate vectors: 

( ), ( 2 ),..., ( ( 1) )f f fP t d P t d P t m d− − − −  where d is the ‘embedding delay’ and m is the ‘embedding 

dimension’ (i.e., the number of delayed coordinate vectors).  The embedding delay  is conventionally selected as 

the delay for which the mutual information function reaches its first minimum (d = 20 weeks) [15].  The embedding 

dimension is conventionally selected as the dimension for which the percentage of ‘false nearest neighbors’ falls 

below a prescribed tolerance (m = 4) [15]. 7 2 1m n≥ +  If , the reconstructed attractor shares key topological 

properties with a reconstruction in any coordinate system, where n is the dimension of the real-world attractor 

[22].  Since n is unobserved, in practice, m n≥  is generally considered adequate to reconstruct true system 

dynamics [26].  

The scatterplot of the delay coordinate vectors depicts a trajectory in reconstructed phase space 

representing a sampling or ‘skeleton’ of the real-world attractor [17, 18].  The empirical attractor for the filtered 

hog-price record is projected into 3-space in Fig. 5a.  It is a torus-type attractor composed of nonrepeating 5-year 

and annual oscillations.  The top view of the empirical hog-price attractor is shown in Fig. 5b.  The sampled 

trajectory makes four full 5-year revolutions around the attractor depicted in Figs. 5c-f. 

Figure 5 

The empirical hog-price attractor was characterized by key topological properties used to identify chaotic 

nonlinear dynamics including the ‘correlation dimension’ and the ‘Lyapunov exponent’ [14, 16].  The correlation 

dimension measures the attractor’s geometric dimension, and thus indicates the minimum number of variables 

required to model real-world phase space [14, 16].  It was calculated to be 2.94. The Lyapunov exponent measures 

the average rate at which initially close points on the attractor exponentially diverge or converge, and thus 

indicates sensitivity to initial conditions. 8

                                                            
6 During the period under consideration, there were no abrupt technological or structural changes that would have 
caused structural breaks. Thus, the de-trended price series can be viewed as being generated under a relatively 
constant economic environment. 

  It was calculated to be 0.03.  Strange attractors are characterized by 

low-dimensional fractal correlation dimensions and positive Lyapunov exponents.  While both measures are 

7 R-package ‘tseriesChaos’ was used for computing the embedding delay and the embedding dimension. 
 
8 R-package ‘tseriesChaos’ was used for computing the correlation dimension, and Lyapunov exponent. 
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consistent with the presence of a strange hog-price attractor, they do not prove its existence given their 

unreliability when computed from short and noisy data [16].  Following conventional empirical practice, we use the 

computed correlation dimension in the analysis to follow [26-28]. 

3.3 Surrogate Data Analysis  

Surrogate Data Analysis is conventionally applied to test whether apparent structure detected in an 

empirically reconstructed attractor is more likely the figment of a mimicking stochastic process. An empirical 

attractor’s topological properties are compared statistically with those taken from phase space reconstructed from 

randomized surrogate vectors [26-28].   

Surrogate vectors are designed to destroy intertemporal patterns in the SSA-filtered record while 

preserving various statistical properties.  We generated two conventional types of surrogate vectors: AAFT 

(amplitude-adjusted Fourier transform) surrogates and PPS (pseudo phase space) surrogates. AAFT surrogates are 

generated as static monotonic nonlinear transformations of linearly filtered noise. They preserve both the 

probability distribution and power spectrum of the SSA-filtered data [27]. PPS surrogates test for the presence of a 

noisy limit cycle by preserving periodic trends in the SSA-filtered data while destroying chaotic structures [28].9

Surrogate data testing proceeds by measuring topological properties associated with the phase space 

reconstructed from each surrogate vector. The mean from the distribution of each measure for the set of 

surrogate vectors is tested for significant difference from the corresponding empirical measure. Statistically 

insignificant differences indicate that detected empirical structure is more likely attributed to stochastic behavior.  

   

We formulated a two-tailed test rejecting the null hypothesis of insignificant difference when mean 

surrogate topological properties are significantly above or below their empirical counterparts. Rejection occurs for 

the set of critical significance levels cα  satisfying:  

( )2 1c tα ≥ −Φ  

                                                            
9 We follow methods outlined in Kaplan and Glass (1995) and Small and Tse (2002) to write R-code generating 
AAFT and PPS surrogate vectors, respectively.   
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where the right-hand side of the inequality is the p-value for a two-tailed test [29], tΦ  is the CDF for the t-

statistic with N-1 degrees of freedom, and  is absolute value. The null hypothesis of insignificant difference was 

rejected for the correlation dimension with a computed p-value effectively zero. Consequently, we rejected the 

hypothesis that the structure detected in the empirical hog-price attractor is due to mimicking random behavior.  

5. A nonlinear dynamic model of the hog industry 

The information revealed by nonlinear time series analysis guides our modeling of the German hog industry. 

The empirical hog-price attractor has an embedding dimension of m = 4, indicating that a minimum of four state 

variables is necessary to capture the essential system dynamics. Since the purpose of our model is to capture these 

dynamics, we do not attempt to formulate a detailed simulation model. The computed Lyapunov exponent 

supports the hypothesis of divergent, possibly chaotic behavior. If the system is represented in continuous10

( )
( )
( )CPC

CSPS

PSDP

c

s

p

,f

,,f

,,f

=

=

=







 time, 

at least three differential equations are necessary to generate chaotic behavior. The empirical attractor is 

composed of two major cycles. The 5-year cycle could represent an investment pattern, and the annual cycle the 

short term adjustment of production. Both are linked to the price of slaughter hogs. We propose the following fifth 

order system of differential equations: 

 (1) 

The system is composed of three dynamic processes: price adjustment, adjustment of the quantity of supply 

resulting from production decisions, and adjustment of the production capacities through investments. There are 

three state variables: production capacities (C), actual production or supply (S), and hog prices (P); along with time 

lags constituting additional (intermediate) states. The first equation describes the price adjustment process in 

which price change �̇� depends on demand (D), supply (S) and the current price (P). The notation 𝑆 indicates a third 

                                                            
10 The system will be modeled in continuous time since all actors are assumed to make their decisions independently 
at arbitrary points in time. This leads to a continuous time representation of the aggregated flows incorporated in the 
model. Contrary, a discrete time model would imply that all actions are synchronized as to take place at the discrete 
time steps of the model which, in our case, would be an unrealistic assumption. 
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order differential equation that determines supply adjustment. This equation, to be specified later, models the 

production decisions based on the marginal cost function, and likewise considers the delay caused by the time 

period necessary to complete the production process. Production decisions in the short run are constrained by 

available production capacities; in the long run these may be expanded through investments. This process is 

modeled by the third equation, where the rate of change of production capacities �̇� depends on product price (P) 

and current resources (C). Given the third order plus two first order differential equations, the above equations 

comprise a fifth order system. 

Operationalizing the model requires specification of the above equations. We begin with the price 

adjustment. Assuming a trial and error process, the rate of price change can be viewed as dependent on the 

difference between demand and supply, i.e. (D – S). This implies that the actors on the market have crude 

information on actual prices and trade volumes.  This information is available for the German hog market from 

weekly magazines and the internet. The simplest functional form is a linear relationship, i.e. 

( ) 0>−= a,SDaP . Assuming that large surpluses of either demand or supply speed up the adjustment 

process, a more adequate formulation is: 

( ) 03 >−= a,SDaP  (2) 

Alternatively, we may postulate that the relative rate of price change equals the right hand side expression of the 

above formula: 

( )

( ) 0

or
3

3

>−=

−=

a,PSDaP

SDa
P
P





 (3) 

This constitutes an additional feedback loop in the model. We use equation (3) in the model. Fig. 6 depicts the 

dependence of the marginal price change P on the difference between demand and supply (D – S) and the price 

level P respectively, according to equation (3). 

Figure 6 
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Demand (D) is modeled with an isoelastic demand function: 

0, >= − cPbD c
 (4) 

where c represents the price elasticity of demand and b is a scale factor.  

The process of supply adjustment is represented by the third order differential equation 𝑆 in (1).  It can be 

separated into two components representing (a) the production decisions and (b) the time lag that occurs between 

the decision to start a production process and its completion. The production decision is based on the marginal 

cost function of the average production unit and the number of production units currently in service: 

0,, >= dgPgCS d
p  (5) 

Sp represents “planned” supply according to the actual decisions, and g P d

 

 represents the marginal cost function. 

An exponent d < 1 indicates economies of scale while d > 1 marks diseconomies of scale. If d = 1 no scale effects 

occur. 

The production time lag is modeled via an exponentially distributed delay which is generally defined by 

the system of first order differential equations 

( )

Sr

Sr

k,...,,i,rr
DEL

kr

k

p

iii

=

=

=−= −

0

1

with

21

 (6) 

where k marks the order of the delay (in our case k=3), and DEL denotes the average delay time (the production 

period plus the reaction time of the decision makers). 

The adjustment of production capacities follows the differential equation 

01 >−







−= l,v,w,

l
CC

Pv
CwC

 (7) 
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The first term represents investments and the second measures the reduction of production facilities due to wear 

and tear. The parameter l measures the service life of the production facilities. The investment term assumes that 

the adjustment of production capacities follows a logistic growth process for the case of constant product price P. 

The term v P marks the upper limit of this process, and can be interpreted as a “target size” of the sector 

proportional to P. A falling market price P can cause disinvestments if the term inside the brackets becomes 

negative as current capacities C exceed v P. This negates sunk cost effects that are important in the German hog 

sector due to the high specificity of the facilities. To allow for irreversibility due to sunk costs, the following 

formulation was used in the model: 

001 >−















−= l,v,w,

l
C,C

Pv
CwMaxC

 (8) 

where the Max[∙] operator ensures that investments are always positive or zero, and capacities can decline only 

through deterioration.  

Large investments often cause high financial leverage that inhibit investments for a period of financial 

consolidation. This can be factored into equation (8) by introducing a (discrete) time lag: 

001 >−














 −
−= l,v,w,

l
C,C

Pv
)Tt(CwMaxC

 (9) 

The expression C(t–T) represents production capacities lagged by T time units. This formulation is equivalent to the 

introduction of a maturation delay in logistic population models and may cause a periodicity if the time lag is 

significant. 

6. Model results 

The model was implemented in © Vensim and solved using a 4th order Runge-Kutta integrator. It was 

simulated over a period of 50 years. Following our empirical results, the base run set the production delay DEL to 1 

year and the time lag T for financial consolidation after large investments to 5 years. The service life of the facilities 
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(l) was assumed to be 15 years on average. No scale effects were considered (i.e. d=1).  The demand elasticity was 

set to 0.25.  Other parameters were normalized to generate a hypothetical equilibrium price of roughly 1.4 €/kg. 

The simulation results are depicted in Fig. 7. The price series generated by the base run of the model (Fig. 7a) 

exhibits aperiodic cyclical behavior consistent with the observed hog-price record. Fig. 7b portrays the trajectory of 

the primary state variables of the model, i.e. price, supply and production, in three-dimensional space and thus 

illustrates the attractor of the system. The graph reveals noticeable similarities with the reconstructed attractor 

depicted in Fig. 5.  Reconstructing phase space from the simulated price series results in an embedding dimension 

of m=4 and a time lag of d=20, and thus reveals largely the same results as obtained in the reconstruction for the 

original time series. This indicates that our model exhibits the same dynamic behavior as found for the real world 

system, and therefore provides a means to identify important determinants for the persistent hog cycle. 

Since the model is completely deterministic, the revealed market instability is endogenous and the aperiodic 

cycling emerges without external shocks. The dynamic properties of the system are due to the inherent 

nonlinearities along with the built in time lags. The nonlinearities refer primarily to (1) the price adjustment 

process, (2) the irreversibility of investments due to sunk cost and (3) the logistic type adjustment of production 

capacities. Together with the periodicity of investments induced by the financial consolidation time lag, these 

factors result in the dynamic response displayed in the upper part of Fig. 7. 

Figure 7 

 With appropriate parameter changes, the model can generate quite different types of dynamic behavior as 

seen from the trajectories depicted in the lower part of Fig. 7. If the financial consolidation time lag is omitted, the 

simulated attractor is converted into a Limit Cycle.  Regardless of the starting point, all trajectories converge on 

one orbit (Fig. 7c). This behavior is caused by the combination of low demand elasticity and the irreversibility of 

investments. It holds over a fairly wide range of parameters. Only increased price elasticity of demand changes 

system dynamics to a Point Attractor (Fig. 7d).  In the absence of external shocks, the system approaches a stable 

equilibrium. However, this is unrealistic because low demand elasticity for food is characteristic for all 

industrialized countries where only a small portion of income is spent for food. 
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7. Conclusions 

We applied a diagnostic modeling approach to investigate causal factors driving the persistent German hog-

price cycle. Nonlinear time series analysis reconstructed an empirical hog-price attractor governing the aperiodic 

cycling of hog prices over time. Our empirical results indicate that causal factors driving the hog-price cycle are 

endogenous to the industry, and therefore can be investigated informatively by formulating a structural industry 

model.  We drew from empirically diagnosed industry dynamics, and knowledge of industry structure and 

technology, to formulate a model that successfully simulated the dynamic complexity of the real-world hog-price 

cycle.   

The model provided important insights into the origin of the hog cycle in Germany. Besides the low price 

elasticity of demand, which is a well-known determinant of market cycles, the model revealed two more important 

influence factors. One is the irreversibility of investments caused by the high specificity of the technology. Along 

with low demand elasticity, this leads to permanent fluctuations in form of a Limit Cycle. Another important factor 

is periodicity of investments induced by a time lag forcing a period of financial consolidation after a big investment. 

This is consistent with the investment behavior of German farmers which is often liquidity driven. It also reflects 

restrictions on the debt ratio imposed by the capital market. Adding this factor to the model converted the Limit 

Cycle into a Torus like attractor. 

 

These results have several practical implications. First, valid medium and longer term price forecasts (i.e. 

beyond a few weeks) are precluded by the nature of the attractor. By the same token, policy measures aimed at 

price stabilization (i.e. buffer stock policies) are likely to fail. Accepting that in industrialized countries demand 

elasticity can hardly be influenced, the remaining starting points for altering the system behavior are (1) the 

technology and (2) the investment and financing behavior. First, a more flexible technology (e.g. multi-purpose 

instead of highly specialized facilities) involving less sunk cost would enable a flexible response to changing market 

conditions, thus lessening the degree of irreversibility of investments. Regarding the second aspect, utilizing 

alternative ways of financing which focus on equity capital (provided by external investors) rather than bank loans, 

would help smoothing the investment cycles. 
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The methodology presented in this paper goes beyond conventional time series modeling – including state of 

the art methods of price volatility analysis (e.g. GARCH-approaches) – as it not only aims at reconstructing the time 

pattern of the series, but seeks to identify causal factors driving the system dynamics. To this end, a structural 

model serves as analytical tool, the design and development of which is guided by the empirically-diagnosed 

dynamic properties of the system (i.e. the nature of the attractor) along with existing knowledge about the 

industry. The diagnostic part of the approach is primarily based on Phase Space Reconstruction techniques. 

However, these techniques fail revealing a clear picture if the investigated time series contains notable (colored) 

noise, as is the case for most economic time series. Singular Spectrum Analysis was therefore applied first, and 

turned out to be a useful method for constructing a noise-free series for the further analysis that still incorporates 

the essential system dynamics. 

The presented diagnostic modeling approach is applicable to a wide range of problems focusing on the 

analysis of systems driven by nonlinear dynamics. These systems are often characterized by chaotic attractors 

whose essential properties can be empirically diagnosed as described, and applied to formulate theory-based 

models able to simulate the complexity of real-world dynamics. 
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Figure 1: Time series of hog prices and estimated trend 

 

 

 

 

Figure 2: Diagnostic modelling approach 
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Figure 3: Spectral analysis 

 

 

 

 

Figure 4: Singular Spectrum Analysis 
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Figure 5: Anatomy of Empirical Hog-Price Attractor 

 

 

 

Figure 6: Price Change as a Function of Demand and Supply 
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Figure 7: Simulation results 
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