German Pig Farmers’ Attitudes towards Animal Welfare Programs and their Willingness to Participate in these Programs: An Empirical Study

Louisa von Hardenberg and Heinke Heise

Dept. of Agricultural Economics and Rural Development, Georg-August-University of Goettingen, Germany
lvonhar@uni-goettingen.de; heinke.heise@agr.uni-goettingen.de

Received February 2018, accepted May 2018, available online June 2018

ABSTRACT

In recent years, the image of intensive livestock production systems has been suffering from increasing public criticism. Many consumers express strong demands for higher farm animal welfare standards – especially in conventional livestock husbandry systems. This applies primarily to products from pork production, as consumers have criticized that the animals have not enough space in their stables and no possibility for outdoor access. Although pig farmers are key stakeholders for the implementation of animal welfare programs (AWPs) there is little evidence of their attitudes towards AWPs. Thus, the main objective of this investigation was to investigate pig farmers’ attitudes towards AWPs and to determine target groups for participation in AWPs. Therefore conventional pig farmers throughout Germany were questioned via an online survey. For statistical analysis an explorative factor analysis and a hierarchical cluster analysis were applied. Four factors and three farmer groups were identified which significantly differ regarding their attitudes towards AWPs and their willingness to participate in AWPs. For all groups of farmers the economic aspects are important for implementing AWPs. The orientation on the production process is strongly influenced by monetary aspects. This paper represents a starting point for the design of tailor-made strategies to increase the market penetration of AWPs and to provide incentives for farmers to participate in AWPs. Further financial incentives are needed to transfer pig farmers attitudes into corresponding behaviour.

Keywords: animal welfare; animal welfare programs; German pig farmers; hierarchical cluster analysis; willingness to participate.
1 Introduction

The image of the German meat industry has been suffering for some time. Due to constant structural change and ongoing intensification of agricultural production processes, particularly in intensive livestock production systems, the meat sector is increasingly being criticized by the public at large. Food crises and scandals (e.g. BSE-crisis, dioxin in meat, rotten meat) (Robbins et al., 2016; Kayser et al., 2012a; Böhme et al., 2010) as well as changing perceptions of agriculture by large parts of the society have significantly influenced public debate. The result is a strong aversion to current farm animal husbandry systems, especially with regard to pig and poultry livestock (Kayser et al., 2012b; Bock and van Huik, 2007). This increases the sensitivity regarding meat production and processing as well as requirements aiming to improve the level of farm animal welfare (FAW) standards (Cembalo et al., 2016; Zühlsdorf et al., 2016; BMEL, 2014a; Vanhonacker and Verbeke, 2014; Lagerkvist and Hess, 2011; Ingenbleek et al., 2012; Nocella et al., 2010; Schulze et al., 2008). As a result the meat industry and other stakeholders have expanded the meat market with a new segment; so-called animal welfare products, (van Loo et al., 2014) to close the gap between heavily criticized conventional products and organically produced and very high-priced meat products (de Jonge et al., 2015; Weinrich et al., 2015; Vanhonacker and Verbeke, 2014; Schulze et al., 2008). Thus, one possibility for farmers to provide higher animal welfare standards is to participate in specific AWPs or programs with higher quality and sustainability standards (Heise and Theuvsen, 2017c; Luhmann et al., 2017; Heyder and Theuvsen, 2012).

Since 2015, an animal welfare initiative (AWI) in Germany has been implementing higher animal welfare standards in pig and poultry farming on a broader basis. It involves participating retailers paying 6.25 ct. per kg of pork and poultry meat sold into a fund. This compensation is intended to support farmers in implementing higher animal welfare standards (ITW, 2018). Among the various labels providing higher animal welfare standards, since 2013 there is the German animal welfare label "Für mehr animal welfare" (in German: "Für Mehr Tierschutz"), initiated by the German animal protection league (DTB, 2018). Furthermore, a governmental animal welfare label (in German: "Staatsliches Tierwohllabel") will be put on the market in 2018 (BMEL, 2018) and aims to ensure increased animal welfare measures and economic gain for farmers. Thus, there are governmental as well as private initiatives that aim to improve animal welfare in intensive livestock production. All of these AWPs require higher animal welfare standards (e.g. more space in the barn). However, there are different possibilities within the programs to ensure higher standards of animal welfare. One the one hand these can be small changes, without major alterations, or visible changes, such as the possibility to have manipulable materials for the animals, as it is usual in the AWI. There are also programs that require higher changes to improve animal welfare (e.g. outdoor access). These aspects can have a different impact on the investment, operational costs and management of pig farms and on farmers’ attitude towards AWPs and their willingness to participate in it.

Many market studies indicate increased willingness amongst consumers to pay a premium for meat and meat products produced under higher animal welfare standards and thus some sales potential for animal welfare products (Pirsich et al., 2017; Heise et al., 2016; Zühlsdorf et al., 2016; Van Loo et al., 2014; Fernyhough, 2012; Makdisi and Marggraf, 2011; Schulze et al., 2008). Furthermore, in countries such as the Netherlands and England, AWPs have existed for some years now and thus have achieved a broad market penetration, (Weinrich et al., 2014). However, the current market share in Germany remains low (Weinrich et al., 2015; Schulze et al, 2008). The long-term success of AWPs depends on several factors. On the one hand, consumers’ shopping behaviour at the point of sale crucially influences the expansion of products from AWPs. On the other hand, stakeholders’ acceptance along the food supply chain for meat and meat products and their willingness to take part in AWPs strongly determines whether an AWP will succeed or not. Farmers are considered one of the most important stakeholder groups for the successful implementation of enhanced animal welfare standards because they are directly involved in production (Theuvsen et al., 2016; Fernyhough, 2012; Deimel et al., 2010a; Franz et al., 2010; Gulbrandsen, 2006; Golan et al., 2000).

Germany is Europe’s largest pig producer and ranks third in the world behind China and the USA (BMEL 2014b). There is a high number of pig farmers in Germany (~24.000 pig farms) (DBV 2017) and pig farming practices are predominantly consistent, providing a high degree of standardization and facilitating the definition of criteria animal welfare measures for AWPs. As a result, pig production provides a good opportunity to implement AWPs in the meat market (Deimel et al., 2010a). In Germany most of pig farmers market their meat on the „spot market“, and are not bound by long-term contracts with other production stages. It is therefore quite difficult to establish higher FAW standards on a voluntary basis if farmers have doubts about the system and its requirements or its chances of long-term success (Deimel et al., 2010b). A higher degree of vertical integration could probably help to enhance the willingness to participate in AWPs. A study of Heise and Theuvsen (2016) indicates that poultry farmers have the most positive attitude towards AWPs compared to pig- and cattle farmers, which might depend on the vertical integration of the chain for poultry production where all stakeholders along the supply chain closely work together. Several researches found that the willingness to participate in AWPs and to establish higher
animal welfare standards is related to farmers’ attitudes towards AWPs (Heise, 2017d; Gocsik et al., 2015; Franz et al., 2012). Furthermore, it has already been shown that the attitudes of farmers strongly correlate with the actual behaviour (e.g. handling the animals) (Breuer et al., 2000; Colemann et al., 1998).

However, so far there have been only a few studies investigating the attitudes of German pig farmers towards higher animal welfare standards and their willingness to participate in these so-called AWPs (e.g. Franz et al., 2012). Thus, the aim of this study is to identify different groups of pig farmers, with regard to their basic attitudes toward AWPs and their willingness to participate in these programs. Previous research from other European countries (Bock and van Huik, 2007; Bruckmeier and Prutzer, 2007) will be used, combined with a comprehensive empirical study. The empirical results have important managerial implications for farmers and provide a starting point for stakeholder who initiate AWPs. So they can design tailor-made strategies to increase the market penetration of AWPs for products from pig production.

2 Material and Methods

Study design

In this study conventional pig farmers throughout Germany were questioned in summer 2014 via a standardized online-survey. They were asked about their personal attitudes towards higher animal welfare standards and their willingness to participate in AWPs. The participants were recruited by means of various mailing lists and in cooperation with several agricultural trade organizations. To avoid more than one person per farm answering the survey; the online link could be used only once. After removing incomplete datasets and outliers, 249 data sets were available for the analysis. Using five-point Likert scales from -2=“I totally reject” to +2=“I totally agree”, respondents rated whether they would reject or agree with the statements about AWPs. Furthermore, nominally scaled questions were used to obtain sociodemographic data and farm characteristics. The survey was divided into several major themes. At first the participants had to answer questions about several farm characteristics. Next the respondents were asked for their opinion of FAW and which criteria they perceive as important for the welfare of their pigs. After that, they had to answer various statements regarding AWPs and the economic viability of AWPs and products from AWPs. In addition they were asked about the need to improve FAW standards in conventional livestock production systems and their willingness to participate in AWPs. In this research we defined AWPs as every program which requires higher animal welfare standards, above this no specific definition was given. No specific improvements were suggested as there are several small and regional programs in Germany requiring quite different levels of FAW. The penultimate part of the survey was about farmers’ satisfaction with their current situation, which includes economic positions as well as what the implementation of higher national animal welfare standards would mean to their own farm. The last questions were about sociodemographic characteristics.

Statistical analysis

The analysis was carried out using IBM SPSS Statistics 24 for Windows. To get an overview of the sample, sociodemographic and farm characteristics were first analysed with univariate methods.

Next, an exploratory factor analysis was performed to combine a large number of items into a smaller number of factors, which allows a simplified interpretation of farmers’ attitudes towards FAW and AWPs. In this paper a principal component analysis with the Varimax rotation method and Kaiser Normalization was applied. The Varimax rotation was applied because the variance of the squared charges in this rotation reaches the maximum value (Diaz-Bone and Weischer, 2015) and thus facilitated interpretation. The factor analysis included almost all Likert scaled statements toward AWPs, the market effects of higher animal welfare standards, the criteria important for a high level of FAW and farmers’ willingness to improve FAW on their own farms. The selected number of items was checked for suitability for factor analysis. For this purpose the Kaiser Meyer Olkin Criteria (KMO), in the literature known as „measure of sampling adequacy (MSA), was used. If the KMO/MSA is <0.5 it is „miserable“ and the factor analysis should not be performed. In the present study a value of 0.902 was determined which is classified as „pretty good“ (Backhaus et al., 2016). Another test criterion is the Bartlett test for sphericity, which checks the null hypothesis that the output variables from the survey population are in uncorrelated form. (ebd., 2016). In this paper, Bartlett’s significance is at a value of p=0.000 and is thus highly significant, as that allows the null hypothesis to be discarded. As a result, there are correlations between the variables. In addition, only those factors that have a value greater than 1 are extracted (assumption of the principal component analysis). The factor analysis explained 59.14 % of the total variance. Finally, four factors including 18 variables were identified in this paper. A reliability analysis provided information about the “internal consistency” of the factors. We chose the Cronbachs Alpha value to measure the consistency. In
addition we deleted all items which downgraded the Cronbachs Alpha value. All factors have a valid consistency (Brosius, 2011; Bühl, 2010).

To assign the farmers to different segments with regard to their attitudes toward AWPs, a hierarchical cluster analysis was applied. For this purpose we used the previously build factors to characterize the clusters. This kind of cluster analysis is used to form homogeneous groups out of a heterogeneous population (Hair et al., 2013; Backhaus et al., 2016). The cluster analysis was divided in three steps. At first the Single-Linkage method was used to remove outliers. As a result the objects with the smallest distances were combined. Next, we identified the optimal number of clusters using the WARD-Method. In this paper we determined three Clusters. The dendrogram, a scree-plot and the elbow criterion were used as decision aids for the optimal number of clusters (Backhaus et al., 2016). Finally a k-Means clustering was used to optimize the results of the WARD-Method. To verify the results a discriminant analysis was applied. In this study 100 % of the original cases were correctly classified (Backhaus et al., 2016; Brosius, 2011). Some other results (Eigenvalues and Wilks-Lambda) of the discriminant analysis also showed that the cluster analysis results are of high quality. Wilks-Lambda is a test of significance. In this study there was a significant difference between the groups. Furthermore the Eigenvalue was higher than one and there were significant differences (p<0.000) between the cluster-building factors (Bühl, 2010). For a detailed characterization of the clusters we used the TamhaneT2 post-hoc multiple comparison test, which showed significant differences between the clusters. The TamhaneT2- test is based on the assumption that the groups can have different variances. For a more detailed description and test of significant differences between the Cluster a univariate ANOVA and cross table were applied (Brosius, 2011).

Sample description

In this study 249 complete data sets were available for analysis. The respondents are on average 46 years old and 89.2 % of them are male. These facts can also be confirmed by the results of the German Federal Statistical Office (Destatis, 2012). A majority of participants stated that they have had experience in agriculture for more than 20 years. Furthermore, most of the survey respondents are from Lower Saxony (25.7 %) and North Rhine-Westphalia (24.5 %) followed by Bavaria (12.9 %), which is in line in with the high number of pig farms in these federal states (Statista, 2018). Moreover 92.8 % stated that their main income is generated by the farm. This is far above the German average as only about half of the farms in Germany are run on a full time basis (Destatis, 2011). On average, the participants cultivate 219 hectares, keeping an average of 1450 fattening pigs and an average of 383 sows and piglets. In Germany about 76 % of all pigs live on farms that keep more than 1000 pigs. The number of sows kept per farm are on average of 227 (DBV, 2017). Due to the small sample size and the farm characteristics of the participants, this sample cannot be considered representative for all German pig farmers. Nevertheless, the dataset can be a suitable exploratory sample for large, future oriented pig farmers.

3 Results

Results of the factor analysis

In order to summarize the large number of selected statements on the attitude towards AWPs, an explorative factor analysis was applied. Overall, four factors have been formed (see Table 1). The first factor “Attitude toward AWPs” can be described by nine items. Most of them reflect the attitude of the survey participants towards AWPs and concerning the market effects of AWPs and the willingness to participate in it. The second factor “Animal Welfare and the Public” combines four statements which describe the attitudes toward the public discussion about FAW, the requirements made on the farmers by politicians, journalists and consumers and that farmers’ opinions are often not heard in public discussions. The last statement in this factor deals with the ability of politicians, journalists and consumers to judge whether a production system is animal-friendly or not. The third factor “Animal Welfare and economy” consists of three statements. These describe the profitability of AWPs and animal welfare products from farmers’ point of view. One of the statements addresses the competitiveness of German farmers in international markets when they have to comply with higher animal welfare requirements. The second statement expresses that AWPs are not economically viable for the farmers. The last statement says the products from AWPs will always only occupy niche markets. The last factor “Importance of animal behaviour and husbandry systems” can be described by two statements. The first of them describes the importance of the opportunity to engage in natural innate behaviour for the well-being of the animals and the second one is about the importance of structural and technical systems in barns for FAW.
Table 1. Results of the factor analysis

<table>
<thead>
<tr>
<th>Factor and statements</th>
<th>FL</th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1: Attitude toward AWPs (Cronbach's Alpha): 0.914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In principle, animal welfare programs are useful for farmers.</td>
<td>0.833</td>
<td>-0.12</td>
<td>1.077</td>
</tr>
<tr>
<td>I plan to participate in animal welfare programs in the future.</td>
<td>0.826</td>
<td>-0.19</td>
<td>1.250</td>
</tr>
<tr>
<td>The Animal Welfare Initiative will not only succeed in animal welfare products in market niches but also by opening up a broad market.</td>
<td>0.808</td>
<td>0.29</td>
<td>1.265</td>
</tr>
<tr>
<td>Animal welfare programs can help improve animal welfare for farm animals.</td>
<td>0.721</td>
<td>-0.74</td>
<td>1.075</td>
</tr>
<tr>
<td>The Animal Welfare Initiative will improve the image of agriculture and meat industry.</td>
<td>0.709</td>
<td>-0.19</td>
<td>1.186</td>
</tr>
<tr>
<td>The animal welfare initiative will prevail on the market in the long term.</td>
<td>0.693</td>
<td>-0.56</td>
<td>1.075</td>
</tr>
<tr>
<td>Farmers can gain competitive advantages by participating in animal welfare programs.</td>
<td>0.678</td>
<td>-0.76</td>
<td>1.022</td>
</tr>
<tr>
<td>Farmers can make more profit by participating in animal welfare programs.</td>
<td>0.660</td>
<td>-0.37</td>
<td>0.976</td>
</tr>
<tr>
<td>Factor 2: Animal Welfare and the Public (Cronbach's Alpha): 0.755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I think the public discussions about animal welfare in livestock farming are exaggerated.</td>
<td>0.736</td>
<td>1.17</td>
<td>0.993</td>
</tr>
<tr>
<td>The opinion of the farmers is not sufficiently heard in the public discussion on animal welfare in livestock farming.</td>
<td>0.643</td>
<td>1.58</td>
<td>0.629</td>
</tr>
<tr>
<td>The demands made on the farmers by politicians, journalists and consumers are hard to implement on the farm.</td>
<td>0.626</td>
<td>0.91</td>
<td>0.908</td>
</tr>
<tr>
<td>Politicians, journalists and consumers cannot judge whether a production system is animal-friendly or not.</td>
<td>0.567</td>
<td>1.29</td>
<td>0.857</td>
</tr>
<tr>
<td>Factor 3: Animal Welfare and the economy (Cronbach's Alpha): 0.542</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher national animal welfare requirements will lead to competitive disadvantages for German farmers in international markets.</td>
<td>0.744</td>
<td>1.40</td>
<td>0.848</td>
</tr>
<tr>
<td>Participation in an animal welfare program is not economically viable for me.</td>
<td>0.581</td>
<td>0.14</td>
<td>1.214</td>
</tr>
<tr>
<td>Products from more animal-friendly production systems will always only occupy niche markets.</td>
<td>0.577</td>
<td>1.13</td>
<td>0.921</td>
</tr>
<tr>
<td>Factor 4: Importance of animal behaviour and husbandry systems (Cronbach's Alpha):0.628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An animal must be able to engage in natural behaviour; only then can it feel comfortable.</td>
<td>0.825</td>
<td>0.62</td>
<td>0.964</td>
</tr>
<tr>
<td>The structural-technical systems used in barns are particularly important for animal welfare.</td>
<td>0.786</td>
<td>0.78</td>
<td>0.973</td>
</tr>
</tbody>
</table>

KMO (Kaiser-Meyer-Olkin value) = 0.902; declared total variance = 59.14%. All statements were scored with a scale from -2 = "totally disagree to +2 = "totally agree". FL = factor load.

Source: Authors' calculation

The aim of the cluster analysis was to identify the most homogeneous groups of participants as possible regarding their attitudes toward AWPs and to determine different target groups for participation in AWPs. To form the clusters, we used the previously formed factors as variables. The following Table 2 shows the results of the cluster analysis. In addition, the cluster-building factors and the underlying items are listed.
The first cluster A distinguishes itself with 87 respondents as the second largest cluster. Factor 1 is considered predominantly negative in this group. The strongest rejection is made by the statements regarding the animal welfare initiative. The variable "The animal welfare initiative does not just succeed in animal welfare products in a market" (μ = -1.39) thus adequately describes how this cluster does not believe in the initiative’s market penetration, followed by the statements that this initiative will prevail on the market in the long term (μ = -1.34) and the farmer will make more profit by participating (μ = -1.21). In addition, the statement "I plan to participate in animal welfare programs in the future" shows the strongest opposition to participating in AWPs (μ = -0.92). However the third statement is still negative but rather undecided on the willingness to participate in AWPs (μ = -0.36). The second factor in this cluster describes the negative attitude towards public discussions and that the opinion of the farmers is not sufficiently heard (μ = 0.512). Moreover, this cluster does believe that “higher national animal welfare requirements will lead to competitive disadvantages for me” (μ = 0.41). The last factor has the most positive perception concerning the husbandry systems and welfare of their animals. Overall this cluster is strongly opposed to AWPs and can be considered as “the convinced animal welfare rejecters”.

The second cluster B is called "the market oriented animal welfare advocates". With a total of 102 participants it is the largest cluster. The first factor is perceived comparatively most positively with a mean of 0.802. In principle, these farmers are willing to participate in animal welfare programs (μ = 1.23) and also plan to do so in the future (μ = 0.82). Furthermore, they recognise the chance that AWPs can help improve animal welfare for farm animals. *** 0.86 b 0.68 ac 0.68 b 0.19

Factor 2: Animal Welfare and the Public ***

The second cluster B is called "the market oriented animal welfare advocates". With a total of 102 participants it is the largest cluster. The first factor is perceived comparatively most positively with a mean of 0.802. In principle, the se farmers are willing to parti cipate in animal welfa re programs (µ= 1.23) and also plan to do so in the future (µ=0.82). Furthermore, they recognise the chance that AWPs can help improve animal welfare for farm animals. *** 0.86 b 0.68 ac 0.68 b 0.19

Factor 2: Animal Welfare and the Public ***

Factor 3: Animal Welfare and the economy *

An animal must be able to engage in natural behaviours; only then can it feel comfortable. *** 0.82 c 1.03 c 0.40 ab 0.61

Factor 4: Importance of Animal behaviour and husbandry systems ***

The structural-technical systems used in barns are particularly important for animal welfare. *** 0.95 bc 1.25 ac 0.32 ab 0.77

Level of significance: * = p≤0.05, ** = p≤0.01, *** = p≤0.001, n.s. = not significant; Letters (a,b,c) signify a significant difference to the corresponding cluster (Tamhane post-hoc multiple comparison test at significance level 0.05). All statements were scored with a scale from -2 = "totally reject" to +2 = "totally agree".

Source: Authors' calculation
improve animal welfare in livestock production systems (µ=0.68). The other statements in Factor 1 are answered in the range of zero. For example, “the animal welfare initiative will improve the image of the agricultural and meat industry” (µ=0.10) or “the animal welfare initiative will not only succeed in animal welfare products in market niches but also by opening up a broad market” (µ=0.02), which could indicate slight scepticism towards animal welfare programs. Factor 2 “animal welfare and the public” met with high approval, especially the second statement “the opinion of the farmers is not sufficiently heard in the public discussion on animal welfare in livestock farming” (µ=1.42). Furthermore, the farmers also see the problem that politicians, journalists and consumers cannot judge as to whether a production system is animal-friendly or not (µ=0.94). However they do not see huge problems in implementing the demands of politicians, journalists and consumers.

Based on the apparent slight scepticism regarding AWPs’ market penetration, the third factor also describes the attitude to FAW and economics. The statement “higher national animal welfare requirements will lead to competitive disadvantages for German farmers in international markets” gets the biggest approval rating (µ= 1.14), followed by “products from more animal-friendly production systems will always occupy market niches only” (µ=0.80). The last factor ascribes the importance of structural-technical husbandry systems for animal welfare and that animals are able to exercise their innate behaviour (µ= 0.337). Taken together, Cluster B has a positive attitude towards AWPs and FAW but is also market-oriented and sees possible weaknesses in AWPs.

Cluster C consists of 60 survey respondents and is called “moderate animal welfare sceptics”. The farmers have a fairly negative attitude toward AWPs and are not willing to participate in such programs. The attitude to Factor 2 “Animal welfare and the public” is quite similar to the other clusters. However, when looking at the mean of the second factor, these farmers have a slightly indifferent attitude (µ= -0.076). The third factor shows that Cluster C farmers are also sceptical toward the economic effects of higher animal welfare requirements and have a negative attitude about the public discussions.

With regard to the last factor, Cluster C attaches less importance to opportunities for their animals to engage in natural innate behaviour and the structural husbandry system (µ= -1.279). Table 3 shows some interesting characteristics in the clusters analyzed clusters. However most of the differences between them are not at significant levels. Most of the pigs/sows live on farms in Cluster A (1598.59/459.26) followed by Cluster C (1526.74/385.93) and Cluster B (1288.13/331.38). However Cluster B includes the largest farms with on average of 274.17 hectares, Cluster A cultivates 196.90 hectares on average and Cluster C has the smallest farm size (159.56 hectares) on average. The average age in the clusters is nearly the same. Most of the women are part of Cluster C (15 %). However, once again the results do not indicate significant differences between the clusters.

Table 3.
Sociodemographic and farm characteristics of the clusters

<table>
<thead>
<tr>
<th></th>
<th>Cluster A n=87</th>
<th>Cluster B n=102</th>
<th>Cluster C n=60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size [n]</td>
<td>87</td>
<td>102</td>
<td>60</td>
</tr>
<tr>
<td>Ø Age in years n.s.</td>
<td>45.52</td>
<td>46.92</td>
<td>45.70</td>
</tr>
<tr>
<td>Share of women [%] n.s.</td>
<td>8.0</td>
<td>10.8</td>
<td>15.0</td>
</tr>
<tr>
<td>Ø Farm size [hectares] n.s.</td>
<td>196.90</td>
<td>274.17</td>
<td>159.56</td>
</tr>
<tr>
<td>Ø number of pigs n.s.</td>
<td>1598.59</td>
<td>1288.13</td>
<td>1526.74</td>
</tr>
<tr>
<td>Ø number of sows n.s.</td>
<td>459.26</td>
<td>331.38</td>
<td>385.93</td>
</tr>
<tr>
<td>Number of sow farmers [n]</td>
<td>42</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Number of pig farmers [n]</td>
<td>66</td>
<td>86</td>
<td>54</td>
</tr>
</tbody>
</table>

Level of significance: * = p<0.05, ** = p<0.01, *** = p<0.001, n.s. = not significant; Letters (a,b,c) signify a significant difference to the corresponding cluster (Tamhane post-hoc multiple comparison test at significance level 0.05).

Source: Authors’ calculation

4 Discussion and Conclusion

The aim of the study was to investigate the willingness of German pig farmers to participate in AWPs and to identify a potential target group for those programs. The results show that pig farmers cannot be regarded as a homogenous group because of their different attitudes towards AWPs. Previous studies also confirm that German farmers are rather heterogeneous in terms of AWPs (Heise and Theuvsen, 2016; Franz et al., 2012).

In this paper, three clusters (farmer groups) could be identified. From these clusters different target
groups for AWPs can be derived. Clusters A and C show a negative attitude towards participation in AWPs. The difference between these farmers is also rather slight. Cluster B, on the other hand, has a very positive attitude towards AWPs.

Cluster A "The convinced animal welfare rejecters" consists of farmers who reject AWPs strongly. They believe that AWPs will always remain a small market and do not achieve large market penetration. Furthermore, they doubt the positive effects (more profit and higher competitiveness) that AWPs can bring. Nevertheless, they are aware that it is particularly important for the welfare of their animals that they have the opportunity to engage in innate behaviour as well as having the structural-technical equipment in barns to ensure animal welfare. However, due to their strongly negative attitude towards AWPs and the public discussion about animal welfare, it can be assumed that this group of farmers will probably not participate in AWPs.

Farmers in Cluster B, on the other hand, argue that AWPs are fundamentally beneficial, both to farmers and to improving animal welfare in livestock farming. In addition, they fully agree that an animal should be able to exercise its innate behaviour and that structural-technical equipment in barns is particularly important for animal welfare. These aspects might suggest a more comprehensive understanding of animal welfare for Cluster B farmers due to their more positive attitude to AWPs. Nevertheless, this cluster is also very market-oriented and is slightly sceptical about the profitability of AWPs. However, they are very willing to participate, making this group the potential target group for AWPs. If AWPs are economically viable for these farmers, they should constitute an important target group for participation.

Farmers in Cluster C also show a negative attitude towards participation in AWPs and their positive market effects. However, in comparison with Cluster A their views are relatively moderate. In addition, they do not believe that animals’ ability to act naturally or that appropriately designed housing are important factors for their well-being. Moreover this cluster would rather not take part in AWPs as they are not convinced of existing AWPs’ economic effects on their own farms and the meat market. It can be assumed that these farmers do not see any need to implement higher animal welfare standards because they regard animals behaving naturally and appropriate barn design as rather unimportant. For the time being therefore, these farmers will probably not participate in AWPs.

Some studies into conventional pig farmers’ understanding of animal welfare have shown that farmers tend to consider animal biological functions performance to be very important criteria for the well-being of animals (Vanhonacker et al., 2008; Bock and van Huik, 2007; Te Velde et al., 2002). However, more recent studies concerning FAW also show that farmers attach some importance to animal behaviour and husbandry systems (Deimel et al., 2010b). Our results confirm the findings of Deimel et al. (2010b) and Franz et al. (2012) that farmers who have a positive attitude to AWPs are more willing to participate in these programs than those who are critical towards higher FAW standards and AWPs. Cluster B "the market oriented animal welfare advocates" confirms this approach as those farmers plan to participate in AWPs, thereby improving animal welfare. The results of this study confirm the results of previous studies (see Heise, 2017d; Gocsik et al., 2015; Franz et al., 2012) that farmers’ attitudes towards AWPs have a strong impact of their willingness to participate in these programs. However, there are other determinants, such as perceived behaviour and subjective norms, which could influence attitudes to AWPs and farmers' actual behaviour (Ajzen, 1991). These aspects were not included in this study and could be an interesting starting point for future studies to explain farmers’ production decision behaviour even more widely.

Looking at all the commonalities in the clusters, it can be seen that economic effects (more profit, competitive advantage, international competitiveness) as well as AWPs’ market penetration and the long-term success of such programs are considered rather critical. This may be partly due to the fact that the implementation of animal welfare measures in pig production poses a certain challenge. There is often no vertical integration and thus control is difficult as there are many participants along the whole supply chain, which in turn leads to high transaction costs (e.g. for monitoring, search and information cost) (BVL, 2016; Spiller and Schulze, 2006). A higher degree of vertical integration could reduce these transaction costs. However, other studies have shown that pig farmers are reluctant to engage with fixed customers and prefer to choose the spot market, which could indicate a further barrier (Heise, 2017).

Some of the clusters are convinced that participating in AWPs is not profitable for the farm and that higher national animal welfare standards can lead to competitive disadvantages for German farmers on international markets. This is also mentioned from Heise (2017). Farmers often fear that higher animal welfare standards will be required as usual standard by German retailers in the years to come. This would force them to implement higher animal welfare requirements without extra monetary compensation (Heise, 2017). An older study by Vanhonacker et al. (2008) found that the implementation of higher animal welfare standards in production is associated with high costs and can endanger the farm’s economic situation. It also implies that monetary aspects are the most important criteria when it comes to participation in quality programs or special AWPs (Franz et al., 2012; Veissier et al., 2008; Bruckmeier
Higher animal welfare standards and more comfortable living conditions for farm animals (Heise and Prutzer, 2007). However, farmers have been rather critical towards the financial effects of AWPs so far and this certainly hinders participation for many of them. Whereas another study has found that farmers participating in AWPs are financially equally satisfied as farmers who do not participate in AWPs (Heise et al., 2018).

In this investigation farm size made no significant difference between the clusters, which may indicate that farmers from both larger and smaller farms are equally interested in AWPs. However, this result is in contrast to the opinion of large parts of the broader public. Many consumers associate small farms with that farmers from both larger and smaller farms are equally interested in AWPs. However, this result is in positively. It should also be noted that attitudes regarding AWI may have changed as AWI was not bias may have influenced farmers to answer the questions with a more positive attitude about their farm who are positively interested in AWPs participated in the surveys. In addition, social desirability statements in the survey were framed positively. It should also be noted that attitudes regarding AWI may have changed as AWI was not established in the market at the time of data collection (2014). Through the discussion about animal welfare and the introduction of the AWI, as well as the growing awareness of the AWI more and more farmers get information about the AWI and other AWPs. So it is possible that pig farmers who then had a negative attitude towards AWPs have changed their opinion and would now take part in AWPs.

Besides these limitations, this study leads to interesting results which may provide an opportunity for stakeholders in the agricultural and food chain to influence pig farmers’ production decisions. The negative aspects and fears that prevent participation in AWPs have to be reduced in the future. Financial aspects and the attitude of other stakeholders certainly influence farmers to participate in AWPs (Miele et al., 2011; Buller and Cesar, 2007). It is therefore important to convince all relevant stakeholders
(politicians and consumers) of the usefulness of AWPs. Another possibility is increased cooperation between farmers and retailers in order to reach a large target group for animal welfare products and to have a fixed contract partner, who will sell their meat. So for further research it would be useful to look also at other players in the supply chain like slaughterhouses, traders, retailer etc. Furthermore financial incentives must be created to motivate ever more farmers to participate in AWPs. Another prerequisite is an international, market-oriented approach to improve FAW in intensive livestock farming across the European Union, as pig farmers are quite apprehensive that higher national welfare requirements will lead to competitive disadvantages for German farmers on international markets. There is also no official definition of animal welfare, which makes it difficult to measure (Pirsich et al., 2014).

The lack of representativeness and the limitations mentioned above mean it is necessary to conduct further research work. The economic benefit of participating in animal welfare related programs has to be clarified. Currently, most farmers do not see any financial advantage in AWPs. However there is no scientific study which confirms this assumption. Future research applying an economic feasibility study would allow researchers to identify economic differences between participants and non-participants in animal welfare schemes. Such a scientific comparison between participants and non-participants is certainly possible. Furthermore, it would be useful to investigate the specific cost of various animal welfare measures in order to estimate respective costs for farmers. Finally, it is very important that higher animal welfare standards are easier to control through appropriate measures and that a legal definition of animal welfare is created.

Acknowledgements

This paper is part of the project Animal Welfare in Intensive Livestock Production Systems - Transformation processes of intensive animal husbandry. Financial support from the Lower Saxony Ministry of Science and Culture is gratefully acknowledged.

References

